3.1.47 \(\int \frac {x^2 (d+e x)^2}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=87 \[ \frac {x}{15 d^2 e^2 \sqrt {d^2-e^2 x^2}}+\frac {d (d+e x)^2}{5 e^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {7 (d+e x)}{15 e^3 \left (d^2-e^2 x^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1635, 778, 191} \begin {gather*} \frac {d (d+e x)^2}{5 e^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {7 (d+e x)}{15 e^3 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x}{15 d^2 e^2 \sqrt {d^2-e^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(d*(d + e*x)^2)/(5*e^3*(d^2 - e^2*x^2)^(5/2)) - (7*(d + e*x))/(15*e^3*(d^2 - e^2*x^2)^(3/2)) + x/(15*d^2*e^2*S
qrt[d^2 - e^2*x^2])

Rule 191

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^(p + 1))/a, x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 778

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*(e*f + d*g) -
(c*d*f - a*e*g)*x)*(a + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(2*a*c*(p + 1)),
Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ[p, -1]

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x^2 (d+e x)^2}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac {d (d+e x)^2}{5 e^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {\left (\frac {2 d^2}{e^2}+\frac {5 d x}{e}\right ) (d+e x)}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d}\\ &=\frac {d (d+e x)^2}{5 e^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {7 (d+e x)}{15 e^3 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{15 e^2}\\ &=\frac {d (d+e x)^2}{5 e^3 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {7 (d+e x)}{15 e^3 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x}{15 d^2 e^2 \sqrt {d^2-e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 63, normalized size = 0.72 \begin {gather*} \frac {-4 d^3+8 d^2 e x-2 d e^2 x^2+e^3 x^3}{15 d^2 e^3 (d-e x)^2 \sqrt {d^2-e^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(-4*d^3 + 8*d^2*e*x - 2*d*e^2*x^2 + e^3*x^3)/(15*d^2*e^3*(d - e*x)^2*Sqrt[d^2 - e^2*x^2])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.48, size = 70, normalized size = 0.80 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-4 d^3+8 d^2 e x-2 d e^2 x^2+e^3 x^3\right )}{15 d^2 e^3 (d-e x)^3 (d+e x)} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^2*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-4*d^3 + 8*d^2*e*x - 2*d*e^2*x^2 + e^3*x^3))/(15*d^2*e^3*(d - e*x)^3*(d + e*x))

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 117, normalized size = 1.34 \begin {gather*} -\frac {4 \, e^{4} x^{4} - 8 \, d e^{3} x^{3} + 8 \, d^{3} e x - 4 \, d^{4} + {\left (e^{3} x^{3} - 2 \, d e^{2} x^{2} + 8 \, d^{2} e x - 4 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{15 \, {\left (d^{2} e^{7} x^{4} - 2 \, d^{3} e^{6} x^{3} + 2 \, d^{5} e^{4} x - d^{6} e^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

-1/15*(4*e^4*x^4 - 8*d*e^3*x^3 + 8*d^3*e*x - 4*d^4 + (e^3*x^3 - 2*d*e^2*x^2 + 8*d^2*e*x - 4*d^3)*sqrt(-e^2*x^2
 + d^2))/(d^2*e^7*x^4 - 2*d^3*e^6*x^3 + 2*d^5*e^4*x - d^6*e^3)

________________________________________________________________________________________

giac [A]  time = 0.28, size = 61, normalized size = 0.70 \begin {gather*} \frac {{\left (4 \, d^{3} e^{\left (-3\right )} - {\left (x {\left (\frac {x^{2} e^{2}}{d^{2}} + 5\right )} + 10 \, d e^{\left (-1\right )}\right )} x^{2}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{15 \, {\left (x^{2} e^{2} - d^{2}\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

1/15*(4*d^3*e^(-3) - (x*(x^2*e^2/d^2 + 5) + 10*d*e^(-1))*x^2)*sqrt(-x^2*e^2 + d^2)/(x^2*e^2 - d^2)^3

________________________________________________________________________________________

maple [A]  time = 0.01, size = 66, normalized size = 0.76 \begin {gather*} -\frac {\left (-e x +d \right ) \left (e x +d \right )^{3} \left (-e^{3} x^{3}+2 d \,e^{2} x^{2}-8 d^{2} e x +4 d^{3}\right )}{15 \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}} d^{2} e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x)

[Out]

-1/15*(-e*x+d)*(e*x+d)^3*(-e^3*x^3+2*d*e^2*x^2-8*d^2*e*x+4*d^3)/d^2/e^3/(-e^2*x^2+d^2)^(7/2)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 131, normalized size = 1.51 \begin {gather*} \frac {x^{3}}{2 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}}} + \frac {2 \, d x^{2}}{3 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e} - \frac {d^{2} x}{10 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{2}} - \frac {4 \, d^{3}}{15 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {5}{2}} e^{3}} + \frac {x}{30 \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e^{2}} + \frac {x}{15 \, \sqrt {-e^{2} x^{2} + d^{2}} d^{2} e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x+d)^2/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

1/2*x^3/(-e^2*x^2 + d^2)^(5/2) + 2/3*d*x^2/((-e^2*x^2 + d^2)^(5/2)*e) - 1/10*d^2*x/((-e^2*x^2 + d^2)^(5/2)*e^2
) - 4/15*d^3/((-e^2*x^2 + d^2)^(5/2)*e^3) + 1/30*x/((-e^2*x^2 + d^2)^(3/2)*e^2) + 1/15*x/(sqrt(-e^2*x^2 + d^2)
*d^2*e^2)

________________________________________________________________________________________

mupad [B]  time = 2.87, size = 67, normalized size = 0.77 \begin {gather*} -\frac {\sqrt {d^2-e^2\,x^2}\,\left (4\,d^3-8\,d^2\,e\,x+2\,d\,e^2\,x^2-e^3\,x^3\right )}{15\,d^2\,e^3\,\left (d+e\,x\right )\,{\left (d-e\,x\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(d + e*x)^2)/(d^2 - e^2*x^2)^(7/2),x)

[Out]

-((d^2 - e^2*x^2)^(1/2)*(4*d^3 - e^3*x^3 + 2*d*e^2*x^2 - 8*d^2*e*x))/(15*d^2*e^3*(d + e*x)*(d - e*x)^3)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} \left (d + e x\right )^{2}}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {7}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x+d)**2/(-e**2*x**2+d**2)**(7/2),x)

[Out]

Integral(x**2*(d + e*x)**2/(-(-d + e*x)*(d + e*x))**(7/2), x)

________________________________________________________________________________________